Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

نویسندگان

  • Derek G. Gray
  • Xiaoyue Mu
چکیده

Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC) was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM). An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances in Chiral Nematic Structure and Iridescent Color of Cellulose Nanocrystal Films

One unique property of cellulose nanocrystals (CNC) is their property of forming suspensions with chiral nematic order. This order can be preserved in films cast from the suspensions, raising the possibility of applications as photonic materials and templates. However, it has proved difficult to generate uniform, well-ordered chiral nematic materials from CNC. Recently, the importance of kineti...

متن کامل

Digital Color in Cellulose Nanocrystal Films

Cellulose nanocrystals (CNCs) form chiral nematic phases in aqueous suspensions that can be preserved upon evaporation of water. The resulting films show an intense directional coloration determined by their microstructure. Here, microreflection experiments correlated with analysis of the helicoidal nanostructure of the films reveal that the iridescent colors and the ordering of the individual ...

متن کامل

Formation of nematic ordered cellulose and chitin

We proposed in a previous paper a unique form of j3-glucan association, nematic ordered cellulose (NOC) that is molecularly ordered, yet non-crystalline. NOC has unique characteristics; in particular, its surface properties provide with a function of tracks or scaffolds for regulated movements and fiber-production or Acetobacter xylinum [Kondo et al. 2002. Proc. Natl. Acad. Sci. USA 99: 14008-1...

متن کامل

Isolationand Characterization of Nanocrystal from Corncob Waste Using H2SO4 Hydrolysis Method (RESEARCH NOTE)

Corncob is one of the industrial waste has cellulose content of 39.1 wt%, which makes it has high potential to be a raw material in the production of cellulose nanocrystal. Corncob was delignificated with 3.5 wt% HNO3 and NaNO2 10 mg, precipitated process with 17.5 wt% NaOH, and bleached with 10 wt% H2O2. Cellulose nanocrystal was obtained by hydrolysis using 45 wt% H2SO4. Corncob and cellulose...

متن کامل

Chiral nematic mesoporous carbon derived from nanocrystalline cellulose.

Template synthesis based on the self-assembly of lyotropic liquid crystals offers access to mesoporous solids with high specific surface areas and periodic structures. Incorporating mesopores (i.e., pores ranging from 2 to 50 nm in diameter) into carbonaceous materials may be advantageous for certain applications, including the adsorption of large molecules, electrochemical double-layer capacit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015